Subscribe to the Journal:

APJ
is a reader-supported journal

Tax deductible Contributions welcome via Pay Pal or credit card. If you would like to support the Journal, please do so here. The Asia-Pacific Journal is available free to all. Your support allows us to improve our service in a new era of conflict in the Asia-Pacific.
Donate:
$25.00 $50.00 $100.00


Join Us:JapanFocus Twitter page  APJ Facebook Page  

Display Your BOOK, FILM, OR EVENT here

 Peace  Philosophy  Centre

Dialogue and learning for creating a peaceful, sustainable world.


 

 

Click a cover to order.
Click a cover to order.
Click a cover to order.
Click a cover to order.
Click a cover to order.
Click a cover to order.
The Asia-Pacific Journal: Japan Focus
In-depth critical analysis of the forces shaping the Asia-Pacific...and the world.

 

From November 10 we launch our annual fundraising campaign to keep the Journal a vibrant and free voice exploring the Asia-Pacific and the world. Fulfilling our goal of $12,000 will allow us to do so, and to move ahead with a redesigned home page that will make our work more accessible and professional and to host a series of special issues in formation. If you wish to support the journal and assure our ability to make it available free to readers around the world, please go to our sustainer's page on the home page and contribute via Paypal or credit card. We are a 501 (c) tax exempt organization, meaning that your contribution is fully tax deductible.

The Asia-Pacific Journal, Volume 11, Issue No. 13, No. 1, April 1, 2013.

Uncomfortable Questions in the Wake of Nuclear Accidents at Fukushima and Chernobyl 
チェルノブイリと福島原発事故が突き付けるいやな問い Japanese translation available

Anders Pape Møller and Timothy A. Mousseau

Send to Kindle

Twenty nuclear accidents at the official International Nuclear Event Scale of 4 to 7 have occurred between 1952 and 2011 (Lelieveld et al. 2012). The risk of another major accident during the next 50 years is high and it has been estimated that some 30 million people could be directly affected by such an accident (Lelieveld et al. 2012). The highest risks occur around major metropolises such as New York, Washington, Atlanta, Toronto, Western Europe, Shanghai, Hong Kong, and Tokyo and Osaka. The lessons that have emerged from Chernobyl and Fukushima reveal a range of serious questions that must be answered appropriately, above all for the sake of citizens, but also for the credibility of the nuclear industry, and for framing the ongoing debate over energy alternatives. Because recent models suggest that more than half of released radioactive material from a nuclear disaster would be transported more than 1000 km from the site of release (Lelieveld et al. 2012), these questions are important even for citizens in distant countries. It is in this spirit that we have produced a list of unpleasant questions that have been a cause of concern since we first started conducting research at Chernobyl in 1992, and have grown in urgency since conducting research at Fukushima beginning in 2011.

Question 1: Why are nuclear reactors frequently clustered making problems much greater in case of emergencies? How to get to the other reactors if one melts down completely? Nuclear reactors are clustered with pairs, quadruplets or even planned clusters with six reactors located at a single site.

Map shows clustering of Japanese Nuclear Power Plants

The reason is often logistical because of benefits of scale, optimal cooling water facilities, regulatory constraints, costs, and other practical reasons. However, the accident at Fukushima clearly showed the potentially disastrous consequences of such siting when a reactor melts down, because the proximity of another reactor may compromise access for emergency and maintenance crews and risk multiple melt downs. Previous assessments by both manufacturers and governments have estimated the risk of melt down in an individual reactor to be negligible and hence the probability of two or more of such events being virtually zero. Clearly that is not the case as shown by events at Fukushima. These observations suggest that nuclear facilities are in need of a re-assessment of risk of melt down given such non-negligible effects of neighboring nuclear reactors.

Question 2: Why are many reactors built on tectonic fault lines, making them highly susceptible to effects of earthquakes?

Earthquake fault lines in Japan

The accident at Fukushima has shown that assumptions about the risk of earthquakes and their consequences are seriously under-estimated. This is now widely understood—yet continues to be debated—in the case of Japan. But the issue is also relevant in the United States (Indian Point, for example) and elsewhere. Clearly in the case of nuclear reactors it is insufficient to base assumptions on ‘ordinary’ risk scenarios derived from ‘common’ earthquakes. Recent assessments of risk related to future major volcanic eruptions in the Canary Islands or the Hawaiian Archipelago suggest these could produce tsunami waves in excess of 20 m height, traveling across the Atlantic or the Pacific in less than a day (e.g. Pararas-Carayannis 2002). The same may apply to risks of major earthquakes on the Pacific coast of the US (Dengler and Smits 2011. Link). Such an event would dwarf the exceptionally strong tsunamis at Fukushima. How resistant are existing nuclear reactors in North America or Japan to such threats?

Question 3: Why were the back-up generators at the Fukushima Daiichi NPP located below ground level so they could be reached directly by seawater, causing malfunction and thereby preventing cooling of the reactors? Both Chernobyl and Fukushima have revealed a number of human errors (e.g. design flaws) that augmented the consequences of the nuclear accidents. Clearly these effects can occur equally likely in the context of an authoritarian Russia or China and a democratic Japan. Hence we can only assume that something similar could happen during a future accident in Western Europe or the US. The list of such human flaws is unlikely to be exhaustive and suggests that managers of nuclear power plants readily forget that humans invariably make errors with short- or long-term consequences. Given the enormous risks, there is an urgent need to generate a catalogue of past and present errors made in building and maintenance of nuclear reactors to prevent future disasters.  Although both the US Nuclear regulatory Commission and the European Nuclear Safety Regulators Group have conducted “stress tests” to assess potential shortcomings at power plants in the US and Europe, it is not evident that power plant owners have taken appropriate actions in response to these evaluations. Amending shortcomings is costly, and if regulators and industry consist of the same group of scientists, the incentive for making amendments may be weak at best.

Question 4: Why are used fuel rods from the nuclear reactors stored at the reactor site, preventing cooling in a case of emergency, thereby compromising security? Spent nuclear fuel rods are commonly located next to working nuclear reactors in cooling ponds, ostensibly because they are considered to be ‘safe’ in these locations, although the real reason appears to be the absence of suitable alternative storage sites in most countries. But it is clear from events at Fukushima that there is a non-negligible risk associated with having spent fuel onsite as this increases the risk of additional problems in case of a nuclear accident especially if, as in the case of the GE-designed Fukushima reactors, the spent fuel pools are located high above the ground, making delivery of cooling water extremely difficult in the case of a station black-out.

Question 5: Why did the International Atomic Energy Association (IAEA) approve nuclear reactors with such poor locations and poorly designed emergency generators? The nuclear industry is monitored and ultimately controlled by the IAEA, under the assumption that it will act in the interest of all citizens of the world. The responsibility of oversight organizations such as national ministerial committees and international organizations is to ensure that citizens are protected from poor management by private or state companies that build and run nuclear power plants. However, citizens cannot be sure that oversight is performed in the interest of citizens because staff of oversight organizations typically move freely between the nuclear industry and oversight organizations, as most clearly shown by the revolving door between the Japanese ministry responsible for nuclear power and the nuclear industry creating what appears to be institutionalized conflicts of interest. It seems likely that similar conflicts exist in other countries as well.

Question 6: Why were pregnant women and children not evacuated earlier and for longer distances to avoid the well-known problems of effects of radiation on early development? The evacuation events in Chernobyl and Fukushima revealed a number of inadequacies with surprisingly great problems in Japan compared to the surroundings of Chernobyl. In Japan some evacuees were transported to locations that proved to be more radioactive than those from which the evacuees originally came from, thereby actually increasing exposure. Most Japanese are unaware of the fact that in 2013, almost 27 years after the accident in Chernobyl, people are still permanently evacuated from areas with levels of radiation that Japanese officials consider to be safe and requiring no evacuation. In Chernobyl no people are living permanently in areas with more than 1 microSv/h, while numerous people live in such areas around Fukushima. The reason for such discrepancies and their health consequences remain poorly understood, and they have certainly not been debated in Japan or elsewhere. The evacuation of people from their homes in poor Ukraine from contaminated areas suggests that this decision is not a direct function of money, but perhaps rather is a question of the large population living in contaminated areas around Fukushima and the magnitude of economic compensation requested by evacuees. The Soviet Union eliminated such problems of claims for compensation to individuals or states by decree.

Question 7: Why were Japanese people evacuated from an area with a radius of 30 km, when French and US citizens were advised to stay 50 km away, and airplanes owned by Air France, Alitalia and Lufthansa were re-directed from Tokyo to Osaka?

Japanes towns, villages, and cities in and around the Daiichi nuclear plant exclusion zone. The 20 km and 30 km areas had evacuation and sheltering orders, and additional administrative districts that had an evacuation order are highlighted.

Similar questions can be raised concerning the radioactive contamination of nearly 70,000 Americans from the army and the navy during the Fukushima event (Witherspoon 2013a, b here and here). The reason why specific actions were taken was to protect people from any potential hazard. In the case of Fukushima the Japanese government was clearly troubled by the scenario of having to evacuate Tokyo in case of a change in prevailing weather patterns that could have readily re-directed the radioactive cloud from the Pacific towards the south. Clearly in this case precautionary decisions were made depending on proximity to the accident site with decision makers further away from the disaster site making more precautionary decisions. Obviously, we should expect the opposite relationship because local people on site should make more informed and hence more precautionary decisions. However, such discussions were likely shrouded in secrecy. Another impediment to transparency may relate to the subjugation of the WHO to the IAEA.  Specifically, the IAEA signed an agreement with the World Health Organization on 28 May 1959 that WHO cannot make any statements about nuclear consequences for human health across the globe without first having the approved by IAEA (Tickell 2009). This certainly gives the impression that the concern for human health is secondary to the concern for the peaceful use of nuclear energy and the corporations that provide it. 

Question 8: Why was the level of radioactivity in Fukushima said by the Japanese prime minister to be low, when in fact it was, and continues to be, higher than the most contaminated areas around Chernobyl, from where people are still evacuated 27 years after that accident? The key to proper management of nuclear reactors in a safe and responsible way was suggested a long time ago by the Nobel laureate Niels Bohr, a founding father of nuclear physics and perhaps the first anti-nuclear activist. During the development of the nuclear bomb he insisted on openness as a means of building trust and reliability among nations. Unfortunately, his words went unheeded and the arms build-up and cold war between the east and the west followed. 

The experience in Japan suggests that managers of nuclear power plants will maintain secrecy to protect their own livelihoods or the interests of their company. The “nuclear village” of this alliance of the nuclear company (TEPCO), the state, and the scientists and media who work to protect the industry is an affront that excludes ordinary citizens. Unfortunately, despite hundreds of minor accidents at nuclear power plants managers routinely ignore national or international requirements and attempt to hide such events. This is the case in authoritarian states like Russia, in Asian democracies like Japan and even in extremely open and non-corrupt Sweden, which despite this presumed openness still had a secret nuclear program to develop nuclear bombs during the 1950’s. This raises serious questions about oversight of the nuclear industry and the extent to which citizens can have confidence in corporate, government, scientific or even international regulatory agency recommendations. The main reasons for such lack of confidence arise from the lack of impartial assessment, secrecy in the case of accidents, and a complete lack of consequences for managers and government regulators even in the event of serious accidents. This lack of accountability can only be restored by involving citizens in regulatory functions of the nuclear industry. If and when ordinary citizens are given the opportunity to play a significant role in such oversight, it might be possible not only for citizens, but also governments and the industry, to trust the statements and recommendations of oversight agencies.

Question 9: Why did the chairman of the IAEA (a Japanese) first travel to Japan four days after the first accident happened in Fukushima? The narrative following Chernobyl was that Soviet incompetence prepared the ground for this terrible disaster (Hopkins 1993), and once the Soviet Union was gone, there would be no further accidents. The Fukushima accident changed all that by revealing that even one of the technologically most advanced societies in the world was able to make a large number of mistakes that exacerbated the severity of the accident. Thus perhaps it was no surprise that neither the IAEA nor anybody else involved in the nuclear industry was willing to act responsibly in the face of this event.

Question 10: Why is Tokyo Electric (Tepco) unwilling to provide information about the identity of the rescue workers and their radiation exposure? Is it ethically defensible to allow rescue workers who are working under stressful conditions to breach accepted levels of radiation exposure? (Tabuchi 2011; interview with Paul Jobin). The reason for such limits is exactly to prevent people from being pressured to make decisions that they should or could not make based on their own knowledge. It is a moral imperative for individuals in some societies to sacrifice themselves for the common good, as shown by events in Chernobyl and Fukushima. Such rescue workers are glorified in writing and statues, but their moral dilemmas and their subsequent medical fate are rarely mentioned. The fact is that such sacrifice is not distributed equally, but is allotted to low paid short-term contract workers who generally are individuals with poor education and lack of resources (Tabuchi 2011), making it easy to impose sacrifice even to the extent that such events are no longer voluntary. Decisions about participation in clean-up should be based on sound ethics rather than forcing poorly educated part-time workers into activities with consequences that they may not even be able to judge themselves.

Chernobyl and Fukushima loom large when assessing the impacts of human technology on our planet. It is also obvious that the decisions made by humans and, therefore, an understanding of human behavior, is important if we are to learn any lessons concerning major environmental disasters. As evolutionary biologist Robert L. Trivers (2009) has stated in his recent book on self-deception, humans have evolved an entire battery of behavior to deceive themselves so to better deceive others. These behavioral mechanisms have evolved as a means to allow humans to cope with and survive small and major disasters, and our presence despite famine and major wars including nuclear war bears testimony to the efficacy of such behavior. We can only hope that thorough psychological and risk analyses of both Fukushima and Chernobyl will help us reduce the risk of future nuclear disasters by revealing the underlying mechanisms that led to these horrible outcomes.

About the Authors:

Anders Pape Møller is a Director of Research at the CNRS in Paris, France.  Timothy A. Mousseau is a Professor of Biological Sciences at the University of South Carolina in Columbia, USA. They have worked together since 2000 studying the impacts of radioactive fallout around Chernobyl, and since July 2011 they have conducted field studies to determine whether fallout from Fukushima is likely to have comparable impacts to those documented in Chernobyl.  Working primarily with birds, but also with insects, spiders, microbes, mammals, and plants, their work has demonstrated a large array of biological consequences for the flora and fauna inhabiting contaminated regions of Ukraine and Belarus, including elevated mutations rates and levels of genetic damage, increased frequencies of developmental abnormalities including tumors and cataracts, shortened lifespans, and decreased fertility. These individual-level effects have translated into smaller populations sizes for many species and even local extinction of particularly sensitive groups. Of particular note are their findings of no clear threshold below which effects are not observed and no evidence of radiation hormesis (i.e. positive effects of low dose radiation). Cumulatively, these studies indicate that even very low levels of radioactive contaminants can significantly impact natural populations and that such effects can increase over time.

The results from their first year of research in Fukushima have recently been published (Møller  et al. 2012, 2013) and strongly suggest that many bird species and some groups of insects have been significantly impacted. Preliminary findings from July 2012 indicate that the impacts of Fukushima fallout are increasing over time.  Most of their 40+ publications on this topic can be found here.

 Correspondence to APM:

Tel: (+33) 1 69 15 56 88

Fax: (+33) 1 69 15 56 96

E-mail: anders.moller@u-psud.fr

Recommended citation: Anders Pape Møller and  Timothy A. Mousseau, "Uncomfortable Questions in the Wake of Nuclear Accidents at Fukushima and Chernobyl," The Asia-Pacific Journal, Volume 11, Issue No. 13, No. 1, April 1, 2013.

Articles on related subjects

• Gabrielle Hecht, Nuclear Janitors: Contract Workers at the Fukushima Reactors and Beyond

• Lucy Birmingham and David McNeill, Meltdown: On the Front Lines of Japan's 3.11 Disaster

• Shoko Yoneyama, Life-world: Beyond Fukushima and Minamata

• Iwata Wataru, Nadine Ribault and Thierry Ribault, Thyroid Cancer in Fukushima: Science Subverted in the Service of the State

• Masuda Yoshinobu, From “Black Rain” to “Fukushima”: The Urgency of Internal Exposure Studies

• Shaun Burnie, Matsumura Akio and Murata Mitsuhei, The Highest Risk: Problems of Radiation at Reactor Unit 4, Fukushima Daiichi

• Aileen Mioko Smith, Post-Fukushima Realities and Japan’s Energy Future

• Timothy S. George, Fukushima in Light of Minamata

• Christine Marran, Contamination: From Minamata to Fukushima

• Fujioka Atsushi, Understanding the Ongoing Nuclear Disaster in Fukushima:A “Two-Headed Dragon” Descends into the Earth’s Biosphere

• Kodama Tatsuhiko, Radiation Effects on Health: Protect the Children of Fukushima

• Say-Peace Project and Norimatsu Satoko, Protecting Children Against Radiation: Japanese Citizens Take Radiation Protection into Their Own Hands

References

Dengler, L. and Smits, G. 2011. The Past Matters: Lessons from History and From Japan’s March 11 Earthquake and Tsunami. The Asia Pacific Journal: Japan Focus (link).

Hopkins, A. T. 1993. Unchained reactions: Chernobyl, glasnost, and nuclear deterrence. University Press of the Pacific, Honolulu, Hawaii.

Jobin, P. 2012. Fukushima One Year On: Nuclear workers and citizens at risk. The Asia-Pacific Journal: Japan Focus (link).

Lelieveld, J., Kunkel, D. and Lawrence, M. G. 2012. Global risk of radioactive fallout after major nuclear reactor accidents. Atnos. Chem. Phys. 12:4245-4258.

Møller, A.P., A. Hagiwara, S. Matsui, S. Kasahara, K. Kawatsu, I. Nishiumi, H. Suzuki, K. Ueda, and T.A. Mousseau. 2012. Abundance of birds in Fukushima as judged from Chernobyl. Environmental Pollution, 164:36-39.

Møller, A.P., I. Nishiumi, H. Suzuki, K. Ueda, and T.A. Mousseau. 2013. Differences in effects of radiation on abundance of animals in Fukushima and Chernobyl. Ecological Indicators, 14: 75-81. (link).

Pararas-Carayannis, G. 2002. Evaluation of the threat of mega tsunami generation from postulated massive slope failures of islands stratovolcanoes on La Palma, Canary Islands, and on the island of Hawaii. Science of Tsunami Hazards 20:251-277.

Tabuchi, H. 2011. Braving Heat and Radiation for Temp Job. New York Times April 10, 2011.

Tickell, O. 2009. Toxic Link: The WHO and the IAEA. The Guardian 28 May 2009.

Trivers, R. L. 2009. Deceit and self-deception. Allen Lane, London.

Witherspoon, R. 2013a. Fukushima Rescue Mission Lasting Legacy: Radioactive contamination of Nearly 70,000 American. The Asia-Pacific Journal: Japan Focus Vol. 11, Issue 11, No. 4. March 18, 2013.

Witherspoon, R. 2013b. A Lasting Legacy of the Fukushima Rescue Mission: Cat and Mouse with a Nuclear Ghost. The Asia-Pacific Journal: Japan Focus, Vol. 11, Issue 12, No. 1. March 25, 2013.

We welcome your comments on this and all other articles. More are available on our homepage. Please consider subscribing to our email newsletter or RSS feed, or following us via Twitter or Facebook.

Comments
Timothy Maloney
04/07/2013
Question 1: Why are nuclear reactors frequently clustered...? " ... because of .... optimal cooling water facilities... " The solution to that is to adopt a reactor technology that doesn't use ANY cooling water, namely Liquid-Fuel Thorium Reactors - LFTR. Question 2: Why are many reactors .... susceptible to effects of earthquakes? "The accident at Fukushima has shown that assumptions about the risk of earthquakes and their consequences are seriously under-estimated." Well, if the fuel is a liquid at atmospheric pressure, what happens in an earthquake is that the pipe ruptures, the liquid flows out onto the floor and it gradually cools and solidifies into a glob. It's radioactive, but it can't vaporize into the air (it's not even close to its boiling temperature) and it can't form small particles because it freezes en masse. Like any melted material that falls on the floor - it cools and solidifies. Wait till the shaking stops, then re-melt it. Question 3: Why were the back-up generators at the Fukushima Daiichi NPP located below ground level so they could be reached directly by seawater, causing malfunction and thereby preventing cooling of the reactors? "Both Chernobyl and Fukushima have revealed a number of human errors (e.g. design flaws).." The moral of that story is that the facility must be walk-away safe. As in, if anything breaks, the liquid reactor fuel drains by gravity out of the core into a wide-area dump tank. There it spreads out, becoming non-critical (can't support a chain-reaction) and cools naturally by exposure to the air. No pumps necessary, no coolant, not even any humans. Question 4: Why are used fuel rods from the nuclear reactors stored at the reactor site, preventing cooling in a case of emergency, thereby compromising security? "Spent nuclear fuel rods are commonly located next to working nuclear reactors in cooling ponds, ostensibly because they are considered to be ‘safe’ in these locations, although the real reason appears to be the absence of suitable alternative storage sites in most countries." Balderdash. The reason fuel-rods are still sitting there on site is because everybody is in a dither about transporting them through "my neighborhood" on their way to the reprocessing plant. We could get those dang fuel-rods out of the cooling pools to a secure facility in short order if we weren't so paranoid about a truck running off the road . Some time ago I looked up the particulars and calculated how many truck-trips it would take to get the entire USA backlog transported to Nevada, and how much time would be required, given the size of the hazmat truck fleet. Now I forget the exact result, but it was measured in weeks. If I find that piece of paper I'll edit this comment with the info. Question 5: Why did the International Atomic Energy Association (IAEA) approve nuclear reactors with such poor locations and poorly designed emergency generators? "The nuclear industry is monitored and ultimately controlled by the IAEA, under the assumption that it will act in the interest of all citizens of the world." What are you guys talking about, "ultimately controlled by the IAEA" ? The IAEA has no enforcement powers - it's strictly advisory. In the Iraq War run-up we saw how much attention gets paid to their advice. The US Nuclear Regulatory Commission gives a nod to the IAEA position, then does what it darn well pleases. Question 6: .....well-known problems of effects of radiation on early development? When you say "effects of radiation on early development", what exactly are you referring to? You sure aren't referring to the US National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, because they say that they can't find any such effects. www.ncbi.nlm.nih.gov/pmc/artic... Here's what they say: Page 1, after Abstract:
 Paragraph 5: "... However, study after study has failed to show any difference in the radiation sensitivity of the survivor's cells as a function of the survivor's radiation dose."
 Paragraph 6: "The ABCC-RERF genetic investigators have searched vigorously for heritable effects of radiation in the offspring of the survivors. To date, not a single one of the many end points has shown a significant effect. " 
ABCC-RERF stands for the American Atomic Bomb Casualty Commission-Radiation Effects Research Foundation, which began work in 1947 in Hiroshima, 1948 in Nagasaki. " In Chernobyl no people are living permanently in areas with more than 1 microSv/h, while numerous people live in such areas around Fukushima." Not only around Fukushima. Around Kerala, India too, which is a popular seaside tourist destination on the Indian Ocean. The average there is about 3 microSievert / hour. Question 7: ....... "Similar questions can be raised concerning the radioactive contamination of nearly 70,000 Americans from the army and the navy during the Fukushima event ..." I'm really glad we've got this test group of 70,000 American armed-service personnel. Let's monitor these Americans for the next half-century with state-of-the-art medical instrumentation and methodology. If, as we expect, there is no statistical health difference between them and a control group, that will settle the matter once and for all. Question 10: ......... "evolutionary biologist Robert L. Trivers (2009) has stated in his recent book on self-deception, humans have evolved an entire battery of behavior to deceive themselves so to better deceive others. ..." Yep, that's us all right. And the most skilled practitioners of this art are modern PR, advertising, and entertainment media. They understand that what grabs viewership is sudden disruptive or scary events - witness the popularity of horror / vampire / apocalypse movies. All the better if the events are somewhat mysterious . Nuclear energy came into our consciousness as an extremely disruptive and scary event - Hiroshima. The corporate media are too irresponsible and lazy to discover the truth, so they've been running with the (well-founded) fear of nuclear explosives ever since. It builds ratings and it's good for business. We've got to just keep repeating till we're blue in the face: Very few people have been harmed by commercial nuclear energy. Far, far fewer than have been harmed by mining, transporting , burning and waste-disposing of fossil fuels. check out www.dirkpublishing.com or www.timothymaloney.net
Add comment
Authors: For all articles by the author, click on author's name.   Anders Pape Møller, Timothy A. Mousseau